
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2016-2672 C

Kokkos	–	Performance	Portability	Today	
Chris&an	Tro,,	Carter	Edwards,	Nathan	Ellingwood,	Si	Hammond	

crtro7@sandia.gov	
Center	for	Compu>ng	Research	

Sandia	Na>onal	Laboratories,	NM	

Kokkos:	Performance,	Portability	and	Produc3vity	

DDR#

HBM#

DDR#

HBM#

DDR#DDR#

DDR#

HBM#HBM#

Kokkos#

LAMMPS# Sierra# Albany#Trilinos#

https://github.com/kokkos

Performance	Portability	through	Abstrac>on	

Kokkos

Execution Spaces (“Where”)

Execution Patterns (“How”)

Execution Policies

-  N-Level
-  Support Heterogeneous Execution

-  parallel_for/reduce/scan, task spawn
-  Enable nesting

-  Range, Team, Task-Dag
-  Dynamic / Static Scheduling
-  Support non-persistent scratch-pads

Memory Spaces (“Where”)

Memory Layouts (“How”)

Memory Traits

-  Multiple-Levels
-  Logical Space (think UVM vs explicit)

-  Architecture dependent index-maps
-  Also needed for subviews

-  Access Intent: Stream, Random, …
-  Access Behavior: Atomic
-  Enables special load paths: i.e. texture

Parallel Execution Data Structures

Separating of Concerns for Future Systems…

Going	Produc>on	
§  Robust	Compila>on	and	Environment	Tes>ng	

§  Nightly	test	of	12	Compilers	(GCC,	Intel,	Clang,	NVCC)	
§  >100	total	configura>ons	
§  Warnings	as	errors	with	“–pedan>c	-Wall	–Wshadow	…..”	

§  Documenta>on	and	User	Training	
§  Programming	Guide	
§  Extensive	Tutorials:	h7ps://github.com/kokkos/kokkos-tutorials	

§  >	300	Slides,	dozens	of	hands-on	examples	with	solu>ons	
§  Under	discussion:	cloud	based	self-learning	labs	(used	at	GTC	2016)	

§  Profiling	and	Debugging	Tools	Integra>on	
§  Talk	by	Simon	Hammond	(SNL)	later	this	week	

§  Produc>on	and	Next	Genera>on	Applica>ons	
§  ATDM	targe>ng	KNL	and	GPUs	from	beginning	(talk	by	Stan	Moore)	
§  Sierra	Mechanics	focusing	on	thread	safety/scalability	un>l	late	2017	

Managing	Memory	Hierarchies	
§  Memory	Hierarchies	At	Low-Level	are	both	Physical	and	Logical	

§  Example	current	x86	+	NVIDIA	GPU	with	alloca>ons	in	
§  UVM	Space:	let	the	CUDA	run>me	handle	data	transfer	
§  CUDA	Space:	I	know	what	I	am	doing,	leave	the	run>me	out	of	the	way	
§  HostPinned	Space:	I	want	to	use	asynchronous	mem-copy	with	DMA	engine	

§  Kokkos	gives	tools	to	do	Low-Level	management	
§  Applica>ons	write/use	customiza>ons	for	higher	level	

management	
§  Example	LAMMPS:	

§  Physics	modules	provide	bit-masks	for	read/write	access	of	fields	
§  Memory	management	in	LAMMPS	uses	Kokkos	API	to	get	data	where	it	needs	
to	be,	including	asynchronous	copies	

§  Open:	can	we	come	up	with	generic	High-Level	Interfaces	
§  Are	use	cases	similar	enough?	
§  Mul>-Lab	CoE	Talk	by	Ian	Karlin	(LLNL)	

LAMMPS	–	Heterogeneous	Execu>on	

0

0.5

1

1.5

2

NoOverlap Overlap

Ti
m

e
 (s

)

Wall Time

Modify Neigh Kspace Comm Pair

IO

Init Comm Pair

KSPACE

Constraints

IO

Reverse Offload

§  LAMMPS/example/accelerate/
in.phosphate	

§  Goal	overlap	Pair	and	Kspace	
§  Requires	Asynchronous	Deep	Copy	

§  When	Overlapping:	
§  Comm	contains	pair	>me	since	it	

fences	to	wait	for	pair	force	
§  96%	of	Kspace	>me	reduc>on	

Managing	Access	Pa7erns	
§  Change	Data	Access	Pa7ern		

§  Single	typedef	per	code		
§  Adapt	to	Architectures	
§  Custom	Layouts	Easy	
§  Example	SIMD	friendly	storage	

§  Support	explicit	vector	types	for	some	kernels	
§  View<float*[3],LayoutRight>
	
§  View<float*[3],LayoutSIMDRight>
§  View<float2*[3],LayoutRight>

x y z x y z x y z x y z

x y zx y z x y zx y z

§  Before:	a[i%V + j*V + (i/V)*V*3] Now:	a(i,j)

xx yy zz xx yy zz
GTC’16, April 4-7, 2016 73/121

Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”

GTC’16, April 4-7, 2016 73/121

Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”

GPU CPU

Example	Atomic	Support	
§  Avoiding	write	conflicts	comes	with	cost	

§  Coloring:	code	complexity	(for	unstructured),	poten>ally	much	more	
memory	traffic	(only	parts	of	each	cache	line	are	used	per	color),	loss	
of	concurrency	

§  Data	Replica&on:	memory	footprint	/	traffic,	addi>onal	reduc>on,	less	
cache	efficient	

§  Atomics:	serializa>on,	loss	of	vectoriza>on,	poten>ally	loss	of	L1	
caching	

§  Compute	Replica&on:	more	flops	/	iops,	more	memory	traffic	

§  Kokkos	is	used	with	all	methods	
§  For	unstructured	problems	atomics	are	omen	preferred	over	

other	approaches	
§  View<double**, MemoryTraits<Atomic> > a_atomic = a;

8

Example	Atomic	Support	
§  Avoiding	write	conflicts	comes	with	cost	

§  Coloring:	code	complexity	(for	unstructured),	poten>ally	much	more	
memory	traffic	(only	parts	of	each	cache	line	are	used	per	color),	loss	
of	concurrency	

§  Data	Replica&on:	memory	footprint	/	traffic,	addi>onal	reduc>on,	less	
cache	efficient	

§  Atomics:	serializa>on,	loss	of	vectoriza>on,	poten>ally	loss	of	L1	
caching	

§  Compute	Replica&on:	more	flops	/	iops,	more	memory	traffic	

§  Kokkos	is	used	with	all	methods	
§  For	unstructured	problems	atomics	are	omen	preferred	over	

other	approaches	
§  View<double**, MemoryTraits<Atomic> > a_atomic = a;

9

Under	development:	KokkosKernels	
§  Provide	BLAS	(1,2,3);	Sparse;	Graph	and	Tensor	Kernels	
§  No	required	dependencies	other	than	Kokkos	
§  Local	kernels	(no	MPI)		
§  Hooks	in	TPLs	such	as	MKL	or	cuBLAS/cuSparse	where	applicable	
§  Provide	kernels	for	all	levels	of	hierarchical	parallelism:	

§  Global	Kernels:	use	all	execu>on	resources	available	
§  Team	Level	Kernels:	use	a	subset	of	threads	for	execu>on	
§  Thread	Level	Kernels:	u>lize	vectoriza>on	inside	the	kernel	
§  Serial	Kernels:	provide	elemental	func>ons	(OpenMP	declare	SIMD)	

§  Work	started	based	on	customer	priori>es;	expect	mul>-year	effort	for	
broad	coverage	

§  People:	Many	developers	from	Trilinos	contribute	
§  Consolidate	node	level	reusable	kernels	previously	distributed	over	mul>ple	

packages	

11
On GPUs: CuSparse vs Kokkos: All: 1.07 Without Small: 0.84

The	Common	Problems	We	Face 		

§  Interference	with	Compiler	Op>miza>ons	
§  Deducing	Independence	of	Views:	restrict	for	pointer	as	class	members?	
§  Hois>ng	loads	from	inner	loops,	with	that	being	parallel_for	
§  Loosing	“const”	when	crea>ng	lambdas	with	capture	by	reference	
§  Generally	loosing	surrounding	informa>on	when	using	Lambdas	

§  Deficiencies	in	C++	Language	for	threading	models	
§  *this	capture	for	Lambdas	in	member	func>ons	

§  Part	of	C++17	
§  Enables	asynchronous	dispatch	
§  Added	to	Clang	3.9	

§  Error	handling	in	threaded	environments		
§  OpenMP	4	handling	of	classes	
§  What	to	do	with	STL	objects	

The	Way	Forward		

§  Stabilize	Kokkos	Capabili>es	
§  Support	tasking	on	all	platorms	
§  Make	sure	compilers	op>mize	through	layers	
§  Harden	KNL	support	for	High	Bandwidth	Memory	

§  Broaden	Implementa>on	Coverage	for	Kokkos	Kernels	
§  Support	Produc>on	Teams	in	Adop>on	
§  Develop	even	more	Documenta>on		
§  Extend	profiling	tools	to	help	with	transi>on	
	

www.github.com/kokkos/kokkos: Kokkos Core Repository
www.github.com/kokkos/kokkos-tutorials: Kokkos Tutorial Material
www.github.com/kokkos/kokkos-tools: Kokkos Profiling Tools
www.github.com/trilinos/Trilinos: Trilinos Repository

http://www.github.com/kokkos

0

2

4

6

8

10

12

14

16

18

2 4 8 16 32

Sp
ee

du
p

vs
 O

M
P-

T0
1

sockets

simple heat conduction; 262,144 elements;
run on Shepard (Haswell, 16C/32T per socket)

OMP-T32
MPI-16
MPI-32
MPI-16 (master)
MPI-32 (master)

NALU	Assembly		
§  Uses	atomic	opera>ons	to	fill	into	matrix	

16

